QUIZ FRIDAY

Label unit circle with radian values AND coordinates, then answer questions regarding all 6 trig functions.

30 points
No calculator!

Part 1 written (10 points)

Label unit circle with radian values AND coordinates.

Part 2 online (20 points)

Answer questions regarding all 6 trig functions. Two attempts per problem will be allowed.

30 total points No calculator!

TODAY'S ASSIGNMENT #1-50...NO CALCULATOR!

CHAPTERS: UNIT CIRCLE ND CAlculator!

1) The value of $\sin \frac{4\pi}{3}$ is

- 2) Find the exact value of $\sin \frac{13\pi}{6}$.
- 3) Find the exact value of $\cos(-\frac{\pi}{4})$.
- 4) Find the exact value of sin $\left(-\frac{2\pi}{3}\right)$.
- 5) Find the exact value of $\tan \left(-\frac{5\pi}{4}\right)$.
- 46) The value of $\sin \frac{3\pi}{2} + \cos \frac{2\pi}{3}$ is
- The numerical value of $\sin \frac{3\pi}{2} + \cos \frac{\pi}{4}$ is
 - $468) The value of sin <math>\frac{\pi}{6} + \tan \frac{\pi}{4}$ is
- What is the value of $\tan \frac{\pi}{3} + \cos \pi$?
 - 410) The value of $\cos \frac{\pi}{3} \sin \frac{3\pi}{2}$ is

NAME:

At $x = \frac{\pi}{2}$, the difference $2 \sin x - \cos (2x)$ is

- 28) If $g(x) = \tan (x \frac{\pi}{2})$, the value of $g(\pi)$ is
- 29) If $f(x) = \cos \frac{x}{3} + \sin x$, then $f(\pi)$ equals
- 30) If $f(x) = \sin^2 x$, then $f(\frac{\pi}{2})$ equals
- 31) If $f(x) = \sin \frac{x}{4}$, then $f(\pi)$ equals
- 32) If $f(x) = 4 \cos 3x$, what is the value of $f(\frac{\pi}{4})$?
- 33) If $f(x) = \cos 3x + \sin x$, then $f(\frac{\pi}{2})$ equals
- 34) Evaluate: $\sec 0 + \csc \frac{\pi}{2}$
- 35) Evaluate: $\csc \frac{3\pi}{2} \sec \pi$
- 36) Evaluate: $\cot \frac{\pi}{2} \tan \pi$

- For which value of θ is the expression $\frac{2}{\tan \theta 1}$ undefined?
- For which value of θ is the fraction $\frac{1}{\cos \theta}$ undefined?
- Evaluate: (2 Arc tan 1)
- use principal values #11-26 | The value of Arc sin (-1) is
- The value of 2(Arc sin 1) is
- If $\theta = \operatorname{Arc} \cos(\frac{\sqrt{2}}{2})$, what is the value of $\tan \theta$?
- The value of cos (Arc tan $\sqrt{3}$) is
- The value of sin (Arc cos 1) is
- 19) What is the value of sin (Arc cos ½)?
- The value of tan (Arc sin $\frac{\sqrt{3}}{2}$) is
- 21) Evaluate: $\cos (Arc \sin \frac{\sqrt{3}}{2})$
- Evaluate: cos (Arc sin (-1))
- Evaluate: cos (Arc tan [-1])

Show both

- Find the value of the expression, Arc sin (tan $\left[-\frac{\pi}{4}\right]$), in radians.
- 25) Find the value of the expression, Arc cos (sin $-\frac{x}{3}$), in radians.
- Find the value of the expression, Arc tan ($\sin \frac{3\pi}{2}$), in radians.

- 37) Evaluate: $\sec^2 \pi 2 \cot \frac{\pi}{2}$
- 38) Evaluate: $\sin^2 \frac{\pi}{3} \tan \frac{\pi}{4}$
- 39) Evaluate: $2\cos\frac{\pi}{3}\tan\frac{\pi}{6}$
- 40) Evaluate: $\csc \frac{\pi}{6} \sec \frac{\pi}{3}$
- 41) Evaluate: $\cot \frac{\pi}{3} \sin \frac{\pi}{3}$
- 42) Evaluate: $2 \tan \frac{\pi}{4} + \sin \frac{\pi}{2}$
- 43) Evaluate: $(3 \tan \frac{\pi}{6} \cos \frac{3\pi}{2}) \div (\cot \frac{\pi}{4})$
- 44) Evaluate: $\frac{\csc \frac{3\pi}{2} \tan \frac{\pi}{3}}{\sec^2 \frac{\pi}{2}}$
- 45) Evaluate: $\sin (Arc \cos [-\frac{\sqrt{3}}{2}])$

- Evaluate: $\sin (2 \operatorname{Arc} \cos [-\frac{\sqrt{3}}{2}])$ Evaluate: $\cos (2 \operatorname{Arc} \tan [\sqrt{3}])$ Find the value of the expression, Arc cos (sin $\frac{\pi}{2}$), in radians,
- Find the value of the expression, Arc sin $(\tan \frac{\pi}{4})$, in radians.

Hint for #40: To solve $\csc \frac{\pi}{6}$ you will first need to evaluate $\sin \frac{\pi}{6}$, then use the reciprocal.

Hint for #30: $\sin^2 x = (\sin x)^2$

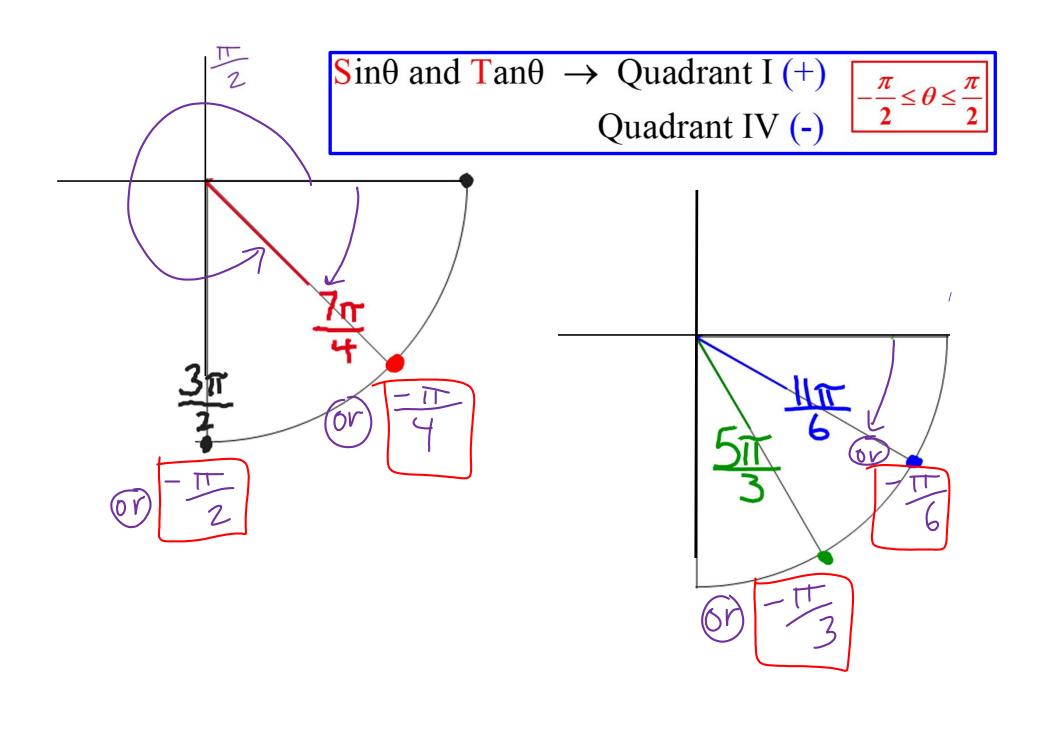
Important: use principal values

for #11-26 and #45-50

Reminders from previous notes:

Principal values create a unique (one) solution:

 $Sin\theta$ and $Tan\theta \rightarrow Quadrant I (+)$


$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

Quadrant IV (-)

 $Cos\theta \rightarrow Quadrant I (+)$ Quadrant II (-)

 $0 \le \theta \le \pi$

↑ UPPER CASE letters are often used to indicate principal values (domain and range restrictions)

Reminder: alternative inverse notation

$$\arcsin \frac{1}{2}$$
 has the same meaning as $\sin^{-1} \frac{1}{2}$

IMPORTANT! Both can be rewritten as: $\sin \theta = \frac{1}{2}$

$$\frac{\sqrt{2}}{2}$$
 has the same meaning as $\cos^{-1}\frac{\sqrt{2}}{2}$ arctan $\sqrt{3}$ has the same meaning as $\tan^{-1}\sqrt{3}$