QUIZ FRIDAY

Label unit circle with radian

 values AND coordinates, then answer questions regarding all 6 trig functions.

30 points No calculator!

Part 1 written (10 points) Label unit circle with radian values AND coordinates.

Part 2 online (20 points)

Answer questions regarding all 6 trig functions. Two attempts per problem will be allowed.

30 total points No calculator!

TODAY'S ASSIGNMENT \#1-50...NO CALCULATOR!

11) For which value of θ is the expression $\frac{2}{\tan \theta-1}$ undefined?
12) For which value of θ is the fraction $\frac{1}{\cos \theta}$ undefined?
13) Evaluate: ($2 \operatorname{Arctan} 1$)
14) The value of Aresin (-1) is use principal values
15) The value of $2(\operatorname{Arcsin} 1)$ is $\# \|-2 b$
(16) If $\theta=\operatorname{Arccos}\left(\frac{\sqrt{2}}{2}\right)$, what is the value of $\tan \theta$?
17) The value of $\cos (\operatorname{Arctan} \sqrt{3})$ is
18) The value of $\sin (\operatorname{Arccos} 1)$ is
19) What is the value of $\sin \left(\operatorname{Arccos} \frac{1}{2}\right)$?
20) The value of $\tan \left(\operatorname{Arcsin} \frac{\sqrt{3}}{2}\right)$ is
21) Evaluate: $\cos \left(\operatorname{Arcsin} \frac{\sqrt{3}}{2}\right)$
22) Evaluate: $\cos (\operatorname{Arcsin}(-1))$
23) Evaluate: $\quad \cos (\operatorname{Arctan}[-1])$
24) Find the value of the expression, $\operatorname{Arc} \sin \left(\tan \left[-\frac{\pi}{4}\right]\right)$, in radians.
25) Find the value of the expression, $\operatorname{Arccos}\left(\sin -\frac{\pi}{3}\right)$, in radians.
26) Find the value of the expression, Arctan $\left(\sin \frac{3 \pi}{2}\right)$, in radians.
37) Evaluate: $\sec ^{2} \pi-2 \cot \frac{\pi}{2}$
38) Evaluate: $\sin ^{2} \frac{\pi}{3}-\tan \frac{\pi}{4}$
39) Evaluate: $2 \cos \frac{\pi}{3} \tan \frac{\pi}{6}$
40) Evaluate: $\csc \frac{\pi}{6}-\sec \frac{\pi}{3}$
41) Evaluate: $\cot \frac{\pi}{3} \sin \frac{\pi}{3}$
42) Evaluate: $2 \tan \frac{\pi}{4}+\sin \frac{\pi}{2}$
43) Evaluate: $\left(3 \tan \frac{\pi}{6}-\cos \frac{3 \pi}{2}\right) \div\left(\cot \frac{\pi}{4}\right)$
44) Evaluate: $\frac{\csc \frac{3 \pi}{2} \tan \frac{\pi}{3}}{\sec ^{2} \frac{\pi}{3}}$
45) Evaluate: $\sin \left(\operatorname{Arccos}\left[-\frac{\sqrt{3}}{2}\right]\right)$
46) Evaluate: $\tan \left(\operatorname{Arcsin}\left[-\frac{1}{2}\right]\right)$
47) Evaluate: $\sin \left(2 \operatorname{Arccos}\left[-\frac{\sqrt{3}}{2}\right]\right)$
48) Evaluate: $\quad \cos (2 \operatorname{Arctan}[\sqrt{3}])$
49) Find the value of the expression, Arc $\cos \left(\sin \frac{\pi}{3}\right)$, in radians,
50) Find the value of the expression, Arc $\sin \left(\tan \frac{\pi}{4}\right)$, in radians.

Hint for \#40: To solve $\csc \frac{\pi}{6}$ you will first need to evaluate $\sin \frac{\pi}{6}$, then use the reciprocal.

> Hint for \#30: $\sin ^{2} x=(\sin x)^{2}$
> Important: use principal values for \#11-26 and \#45-50

Reminders from previous notes:

Principal values create a unique (one) solution: $\operatorname{Sin} \theta$ and $\operatorname{Tan} \theta \rightarrow$ Quadrant I (+) Quadrant IV (-)

$$
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$$

$\operatorname{Cos} \theta \rightarrow$ Quadrant I (+)

$$
0 \leq \theta \leq \pi
$$ Quadrant II (-)

\uparrow UPPER CASE letters are often used to indicate principal values (domain and range restrictions)

Reminder: alternative inverse notation

$\arcsin \frac{1}{2}$ has the same meaning as $\sin ^{-1} \frac{1}{2}$
IMPORTANT: Both can be rewritten as: $\sin \theta=\frac{1}{2}$
$\arccos \frac{\sqrt{2}}{2}$ has the same meaning as $\cos ^{-1} \frac{\sqrt{2}}{2}$
$\arctan \sqrt{3}$ has the same meaning as $\tan ^{-1} \sqrt{3}$

